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Coded Modulation for the Deep-Space Optical
Channel: Serially Concatenated
Pulse-Position Modulation

B. Moision! and J. Hamkins!

We present an error-control coding technique for optical communications. It
consists of the serial concatenation of an outer convolutional code, an interleaver,
a bit-accumulator, and pulse-position modulation (PPM). We refer to the coded
modulation as serially concatenated PPM, or SCPPM. The encoding is accom-
plished with simple shift register operations and a table look-up to map code bits
to PPM symbols. The code is decoded with an iterative demodulator—decoder,
using standard turbo-decoding techniques. For system constraints typical of the
Mars Laser Communications Demonstration, simulations indicate operation within
1 dB of capacity. We show that the standard decoder can be simplified by precom-
puting certain edge likelihoods on a reduced-edge trellis, without approximation or
degradation, and that an M-input max function may be distributed and pipelined.
A further simplification allows one to discard many of the channel observables, with
negligible degradation.

l. Introduction

This article presents an efficient error-control code (ECC) and modulation for an optical communi-
cations channel. The coded modulation is designed to support NASA’s Mars Laser Communications
Demonstration(MLCD)—an optical communications link from Mars to Earth that will operate at data
rates of up to 49 mega-bits per second (Mbps). The MLCD laser terminal will be carried aboard the
Mars Telecommunications Orbiter and is scheduled to launch in 2009.

For our purposes, the optical communications channel may be reduced to the block diagram in Fig. 1.
User information u is encoded, modulated, and transmitted over an optical channel that is modeled as
a Poisson point process. At the receiver, the signal is demodulated and decoded (shown as an iterative
procedure), yielding estimates of the user data. Wyner [1] showed that under peak and average power
constraints, negligible capacity is lost when restricting the modulation to a binary, slotted scheme. Fur-
thermore, for peak and average power constraints typical of a deep-space link, restricting the modulation
to pulse-position modulation (PPM) [2] is near-capacity achieving as well [3]. The efficiency of PPM for
an optical channel has been noted elsewhere, e.g., [4].
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Fig. 1. A coded optical channel.

Hence, we constrain the modulation to be PPM and address the choice of a suitable ECC. Several
ECCs have been considered for the Poisson PPM channel in the past. In [5], a Reed-Solomon (RS) code
was proposed for error protection on the noiseless Poisson PPM channel. The noiseless Poisson PPM
channel is a symbol erasure channel, and an (n, k) RS code may be tailored to fit an M-ary PPM channel
by choosing n = M — 1 and taking code symbols from the Galois field with M elements. This code
is optimum for the given block length n on the noiseless channel in the sense that it can correct up to
n — k + 1 symbol erasures, which is the maximum for a linear code with block length n.

However, a block length of n = M — 1 is, for cases of practical interest, too small to achieve good
performance. Longer block lengths may be obtained with RS codes defined in higher-order fields, in
which multiple PPM symbols are associated with each code symbol, but this results in only marginal
improvement [6]. RS performance on a noisy Poisson channel typically remains 3 dB or more away from
capacity when conventional hard-decision decoding is used [6]. Recent improvements in RS decoding [7,8]
will reduce the gap, but their use is not explored here.

A number of coding techniques involving convolutional codes have also been proposed. Massey [9]
illustrated that the M-ary erasure channel is equivalent to the parallel combination of log, M binary
erasure channels, and proposed coding each separately using a convolutional code. He demonstrated
more robust performance than RS-coded PPM. Alternatively, M-ary convolutional codes can be used
directly with M-ary PPM [10]. A joint decoding and demodulation of this coded modulation requires a
trellis with nodes of degree M.

In this article, we propose a variant on convolutionally coded PPM, motivated by recent results in
serially concatenated, iteratively decoded codes [11]. In the proposed scheme, a large block of user bits is
first encoded by a short-constraint-length convolutional code. The output is then bit interleaved, passed
through a rate-1 recursive accumulator, and mapped to PPM symbols. The encoding and modulation
differ from prior approaches only in the introduction of a bit interleaver and accumulator. It is the
decoding algorithm that is significantly different.

Conventionally, the modulation and ECC are decoded sequentially, with the demodulator sending its
results to the ECC decoder. However, we may consider the combination of the modulation and the
ECC as a single large code, which maps user information bits directly to the symbols transmitted on
the channel and use an iterative demodulator—decoder to decode this large code. Once the underlying
trellis descriptions of the outer convolutional code and inner accumulator and modulation are formulated,
standard forward-backward algorithms [12,13] can be used on them. Numerical results show that this
is a powerful technique to obtain near-capacity performance, sometimes several decibels better than
previously proposed coding techniques.

Prior work on iterative decoders considered the application of turbo codes applied to the Poisson PPM
channel. A turbo code conventionally consists of a pair of convolutional codes concatenated in parallel
through a bit interleaver and decoded iteratively. In [14] a turbo code was applied to the binary PPM
channel, and in [15] a turbo code was applied to M-ary PPM. In the latter article, the PPM demodulator
passes soft information to the turbo code but is not involved in iterative decoding. This approach allowed
performance improvements of more than 0.5 dB over RS-coded PPM. In [16], a turbo code is decoded
iteratively with PPM demodulation on the discrete-time Rayleigh fading channel, illustrating performance
1-2 dB from capacity. By allowing iterative demodulation and choosing a simple short-constraint-length



outer convolutional code, our proposed approach is able to achieve both better performance and lower
complexity than the turbo-coded PPM approaches.

The remainder of this article is organized as follows. In Section II, we describe the SCPPM encoder
and trellis description. In Section III, we describe the decoding algorithm and some simplifications of
the algorithm. In Section IV, we describe statistics generated by a Poisson channel. In Sections V
through VII, we describe particular choices of interleaver, stopping rule, and bit-to-symbol mapping,
illustrating performance results in Section VIIIL. In Section IX, we look at the performance of some lower-
complexity decoding algorithms.

Lowercase u,w,y,x denote realizations of the corresponding random variables U, W)Y, X. Boldface
u = (uy,us, - ,uy) and U = (Uy,---,Uy) denote vectors. We also write u = (uy,---,uy), where each
ug = (Uk,1,- -+, Uk n) is & vector. The subscript u;,; 2 (w, uipy, - ,u;) is used to denote a subsequence;
Wi, denotes the sequence w with element wy ; removed. The notation py(y) is used to denote the
probability density or mass function of random variable Y evaluated at y. When the random variable is
clear from the context, we simply write p(y) for py (y).

Il. SCPPM Encoder

The serially concatenated pulse-position modulation (SCPPM) encoder is illustrated in Fig. 2. In
performance results, we assume a short cyclic-redundancy-check (CRC) pattern is added to each block
of user bits prior to SCPPM encoding. The CRC is used for block error detection and for terminating
decoding but is not considered part of the SCPPM code. Its use is discussed in Section VI.

The SCPPM encoder consists of two constituent codes, referred to as the outer and inner codes, and
a bit interleaver. The outer code is a short-constraint-length convolutional code. The inner code is
composed of an accumulator (a 1/(1 + D) filter) and a memoryless PPM modulator and referred to as
an APPM code. The modulator maps each set of log, (M) bits at the output of the accumulator to a
PPM symbol. A practical and robust interleaver structure is discussed in Section V, and a bit-to-symbol
mapping that provides robustness on a channel with memory is discussed in Section VII.

A block of information bits u is encoded by the outer code to yield a coded sequence x. The sequence
x is interleaved, bit-wise, to produce the sequence a = (a;,as,--,ay), which is encoded by the APPM
code to yield the sequence ¢ = (c1,c¢a, -+, cn), where each a; is a log,(M)-bit pattern and each c¢; the
corresponding M-ary PPM symbol. Hence a single codeword consists of N PPM symbols. The sequence
of PPM symbols is transmitted over a memoryless channel and received as y.

The inner and outer encoding may be described by a graph or trellis consisting of a set of states V, and
a set of directed, labeled edges £. The trellis description of the two codes will be used in the decoding
algorithm. We describe the notation used for the inner code. The outer code is analogous.
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Fig. 2. The SCPPM encoder structure.



Each edge e € £ has an initial state i(e), a terminal state ¢(e), an input label a(e), and an output
label c(e). Encoding proceeds by following a path through the graph and reading off the output edge
labels as follows. Let sx_1 be the state at time k — 1, and e the unique edge with i(e) = s;_1 and
a(e) = ay. Then e, = e, ¢ = c(e), and s, = t(e). This notation is illustrated in Fig. 3. Let 56‘}1- (E&) be
the set of edges with a(e); = 0 (c(e); = 0) and Efi (Slc:i) the set of edges with a(e); =1 (c(e); = 1).

lll. Decoding Algorithm

A functional block diagram of the SCPPM decoder is illustrated in Fig. 4. The decoder consists of
a soft symbol de-mapper, two soft-input soft-output (SISO) modules, which essentially invert the two
constituent codes, an interleaver, and a de-interleaver. The SISO algorithms differ in their dimensions
and sources of inputs and outputs, but otherwise are the same. Derivations of the SISO algorithm have
appeared in various forms in the literature, e.g., [12,13]. We derive the algorithm and present it here to

yield a self-contained article. In Section III.E, we note some simplifications to the implementation of the
APPM SISO.

A. SISO Module—Updating Likelihoods

Each encoder maps an input sequence, either u or a, into an output sequence, either x or c¢. In
the iterative decoding process, each encoder has a corresponding decoder—a SISO module. The SISOs
receive, as soft inputs, noisy versions, or likelihoods, of the input and output of the encoder and produce
updated likelihoods of the input, or output, or both. These likelihoods may then by transmitted to the
other module, where they are treated as noisy inputs.

The inner and outer SISOs are analogous in their operation. We will examine the computation of the
bit likelihoods for a, the input to the inner code. The analysis is the same for the outer code.

As seen in Fig. 4, the inner SISO takes as input a priori likelihoods of a = (a1, ---,ay) and ¢ =
(c1,-+-,cn), and produces an updated likelihood of a. Since y = (y1,---,¥n) is a noisy version of c,
with each y; corresponding to M-bit PPM symbol c;, the a priori likelihood of ¢ given y can be computed
from the channel transition density, p(y|c). Similarly, the a priori likelihood of a can be thought of as
being computed from a noisy version of a, which we denote w. The sequence w and channel p(wl|a)
are artificial constructs introduced to aid in analysis of the decoder, as done in [17], and do not appear
explicitly in the final algorithm. The a priori likelihoods of a and ¢ are assumed to be independent.

i(e) t(e)
S, e s

O a(e)/c(e) O

Fig. 3. Trellis edge.
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Fig. 4. SCPPM decoder.



Given the noisy observations y and w, we define a priori likelihoods corresponding to the kth PPM
symbol:

plags;I) = P(we,ilak,q)
logy M
plas 1) = [ plaws D)
=1
p(cr,is 1) = p(yn.iler,:)

M
plews ) = [ peras D)
=1

denoted with an I to signify they are inputs to the algorithm. This is the information we have about
the values of a and c from the noisy observations prior to performing decoding, that is, prior to adding
knowledge of the dependence between a and ¢ imposed by the encoder.

The output of the algorithm, given these inputs, will be the likelihoods

p(an,i;0) = plarily, Wi.q)

plagi,y, w)
p(wiilak,:)p(y, Wik,i)

1

= PE. Y W(ey, W)
plar,i; Dp(y; Wik,i) pe;: "
el

.
K3

The p(ag,;; O) are referred to in the literature as extrinsic information—the information about ay ; con-
veyed by y and wi, . The quantity p(ax|y, w) is referred to in the literature as the a posteriori
information. We can interpret the decoder as a mapping of the a priori information into the extrinsic
information by factoring out the a posteriori information as

plak,ily, w)
plak,; O) = K—=
(k1 0) plak,i; I)
where K = p(wy |y, W), a constant relative to ag,;.
Let
Me(€) = pe, vy wile,y, w) (1)

In order to avoid computation of p(y, wy i), we enforce the condition pa, ,(0;0) + pa, ,(1;0) = 1 so
that
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pa,.(0;0) = m ; Ax(e)

0,

1
(1 = 2
P 0= i 2 M) ?
where
1
K, = Ak(e) + Ak (e)
! pAk,i(O; ) 6628;4 Pa, @(17‘[) 8625;“

Hence, the algorithm reduces to computing Ag(e) for each edge in the trellis. To this end, let

ax(s) = (8K, Y1:6, Wiik)

Br(s) = p(Yr+1.n|58)

Vi(€) = plex, Y wi|sk—1)
= p(ak|sk—1)p(Yk|Wk, ak, ck, Sk—1)

p(Wkl|ak, sk—1)p(Cr| Wk, ak, Sp-1) (3)

= Kop(wyi|ak)p(yklck) (4)
= Kopi(a; I)pi(c; I)

We obtain Eq. (4) from Eq. (3) by dropping p(ck|wy, ag, Sk—1), which is an indicator function on allowed
trellis edges, assuming that Y}, is (conditionally) independent of Wy, and Ay given C, and assuming
that Ky = p(ag|sg—1), the a priori probability of each outgoing edge label, is a constant.

Factor Eq. (1) as

A(e) = a1 (i(e))yr(e)Br (t(e)) (5)

It can be shown that the the following recursive equations may be used to compute the o’s and §’s:

ar(s)= Y ar(i(e)m(e) (6)
e:it(e)=s

Br(s) = Z Bret1 (t(e)) Vi1 (e) (7)
ei(e)=s



The algorithm is initialized by setting a;(e) and By(e) to reflect the initial and terminal states of the
encoder.

Note that in Eq. (2) multiplying each Ag(e) by a constant independent of e will not affect the result.
Similarly, by Eq. (5), one can multiply the a’s, 8’s, or v’s by a constant for each k to prevent over- or
under-flow in Eqgs. (6) and (7).

In an analogous manner, the outer SISO receives noisy versions of the input (u) and output (x) of the
outer code and computes bit likelihoods p(uy i; O) or p(zk,:; O). The operations of both SISOs will be
given in detail in the Appendix.

B. Algorithm Summary

In the following, we summarize the steps involved in one decoding, or iteration, of the inner SISO as
it might be implemented in software. The encoder is assumed to start in state s = 0 and terminate in an
arbitrary state.

(1) Receive symbol likelihoods p(cg; I) from the channel and bit likelihoods p(ay ; = 0;I) from
the outer code (on the first iteration, set p(ay,; = 0;I) = 1/2). Compute

logy M

plag; ) = ] plari D)
i=1
logy M
= I (aws+ (=) plap; = 0:1))
i=1
for k=1,---, N and each log,(M)-ary bit pattern ay.
(2) Compute

Yi(e) = plag; I)p(cr; I)

foreecfand k=1,---,N.
(3) Initialize

a1 (s) = 1, s=0
127700, otherwise
1
2

Recursively compute

ar(s) = Y ar-1(i(e)(e)
e:it(e)=s
Br(s) = Z Brt1(t(e))ver1(e)

eii(e)=s

forseVand k=1,---,N.



(4) Compute

foreecfand k=1,---
(5) Compute

1
bay; (1§ I)

Z /\k(e)

eegfi

and p(ay ;0) from Eq. (2) for k=1,---,N,i=1,---,logy(M).

C. Log-Domain Implementation

The SISO algorithm may be implemented in the log domain, which translates multiplications into
additions, and may be less sensitive to roundoff errors in fixed-point arithmetic. We extend our example,
decoding of the inner code. The algorithm may be converted in a straightforward manner by defining

0 (5) 2 Tog o (s)
Br(s) = log Br(s)
Fie(s) = log Yk (s)

Ax(€) 2 log Ax(e)

— yaN pAk-L(O7I)
plag,; 1) = log ————
(s h) =log )
_ P4, (0;0)
ap;0) = log =22 72
plar, ) gPAk,,:(hO)

m(ck; I) = log p(cy; I) + constant

m(ag; I) = log p(ay; I) + constant

As input to the SISO algorithm, we receive the bit log-likelihood ratios (LLRs) p(ak,i; I) from the outer
code and symbol log-likelihoods 7(cg; I) from the channel. We first compute the symbol log-likelihoods

m(ag; I). Note that for ax; € {0,1}



1 o 1
log p(ak,:; 1) = 5(*1)%117(%,1‘; I)+ 3 log (pa,.. (0;1)pa,,(1;1)) (10)

In an analogous manner to the product domain, in the log domain we may add a constant to each 7(ay; /)
(or %, B, &, A) in a trellis stage. The second term in Eq. (10) is a constant relative to ay_;; hence, we may
use
logy, M 1
mlag D)= D 5 (1) plari )

i=1

as the symbol likelihoods.

Transforming the remainder of the algorithm yields

Fi(e) = m(ay; I) + m(cx; )

ay(s) = log Z ag—1(i(e)) vk (e)

e:it(e)=s

log Z exp (dk,l (z(e)) + ﬁk(e))

e:t(e)=s

)
=
—
»
N
Il

log Y exp (Bt (tle)) +Tnia(e))

e:i(e)=s

D. The max Operation

To obtain @ and 3, we must evaluate a function of the form log > exp(a;). We'll look at some of the

properties of this function. Let max denote the binary function
amax b = log(e® + €)

The max function has the following properties:

(1) Commutativity: a max b= b max a

(2) Associativity: (a max b) max ¢ = a max (b max c)
(3) Identity element (—o0): a max (—oo) = a

(4)

4) Addition distributive over max: a + (b max ¢) = (a + b) max (a + ¢)



The first three properties are straightforward. The last follows as
(a + b) max (a + ¢) = log(e®*? + ¢*+°)
= log (e*(e” + ¢°))
=a+ log(eb +e°)
= a+ (b max ¢)
Since max is associative and commutative, we will write

@] MAX @y MAX - - - MAX ap :maxizl,...ﬁp {a;} (11)

Finally, note that
log(eb + €°) = max(b, c) + log(l + e—\b—c\)

By pre-computing a table of log(1 + e~1*=¢l) for a range of values of |b — ¢|, we have a low-complexity
implementation of max in hardware.

E. Simplified Computation with Parallel Edges

The APPM trellis has 2 states and 2M edges per stage. The forward and backward recursions and
mapping of As to bit probabilities on this trellis require max operations with M arguments. Suppose each
2-input max operation requires one clock cycle. A straightforward implementation using Eq. (11) would
incur a delay of log,(M) clock cycles. We show here how the computation may be pipelined, reducing
the M-input Engx operation to a 2-input max operation that may be completed in one clock cycle. We
consider the (§ recursion; all others follow in a similar manner.

In the product domain, it is straightforward to see an application of the distributive law (multiplication
distribution over addition) saves computations on a trellis with parallel edges:

Br(s) Z Bry1(t(e))yrrale)

e:i(e)=s

S Bera(s)mmaale) + > Bre+1(8") i+ ()

eii(e)=s,t(e)=s eri(e)=s,t(e)=s’

= Bera(s) D (o) | + | Bera(s) > wle)

e:i(e)=s,t(e)=s eii(e)=s,t(e)=s’

:5k+1(5)’)/]/c+1(575) +5k+1(5/)’71/<+1(3,sl) (12)
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where

Yo (8.3 = Y (o)

eri(e)=s,t(e)=3

a sum over parallel edges.

We have an analogous simplification in the log domain via the distributive law (addition distributive
over m?:mx) which can be seen by taking logarithms of both sides of Eq. (12):

Br(s) =log (exp (Bit1(s) + Th11(s,5)) +exp (Bes1(s) + Tiya (s, 57)))

= maxse (s ) {Ber1(8) + Ty (s,8)}

where

He=tg| 3 emn

e:i(e)=s,t(e)=3§

:m*axe:i(e)zsyt(e):g {%H(e)}

Since the 7, s are not a function of a recursively computed quantity, they may be pre-computed via a
pipeline as illustrated in Fig. 5 [18].

7(&4)

7(€2) max |
e ——_—
max f— -----
(e3) |_> loga(M12)
:
max

7_’(64) ®e @ mmes- — 7—/
[ ] 'YX ) b
®  L.... —_—
[ ]
°
e "Tt-- —— .
max f—- -----
7(emia-1) _,_>
—_—
7(emiz) max

Fig. 5. Pipelined max computation.
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IV. Channel Likelihoods—Partial Statistics

The output of a photon-counting detector, e.g., a photomultiplier tube, may be modeled as a Poisson
process, with mean n; in a noise slot and ng 4+ n; in a signal slot,

(ns + ny)ke=(nstme)
k!

pyic(k[1) = (13)

k —MNp
nye

k!

py|c(k|0) =

Let ¢) denote the PPM symbol with a pulse in the jth slot.

In the special case ny, = 0, the PPM channel reduces to an M-ary erasure channel with

1, Yk,j > 0
PclY (C(j)|Yk) = { 1/M7 Y = 0
07 Yk,i > OaZ 7é.]

PY.|Ch (W\C(j)) = Mpvy, (Yr)Pc, |y, (C(j)b’k)

Factoring out Mpy, , which is not a function of ¢ the likelihoods depend only on whether photons are
observed—mnot on their number. Hence, in zero background it is sufficient to transmit the location (or
absence) of observed photons in each symbol.

When n; > 0, the channel log-likelihoods are

m (c(j);l) = log p(yk|c'?)

p(k,jler; = 1)

-+ constant
p(Yk,jlck,; = 0)

= log

= Yi,j log (1 + E) + constant
np

To realize the gains of iterative decoding algorithms would nominally require a likelihood be computed
and stored for every slot of each PPM symbol in a codeword. However, high data rates, large values
of M, and large interleavers can make likelihood storage and processing prohibitively expensive.

To reduce the complexity of iterative decoding, we may discard the majority of the channel likeli-
hoods [19], operating the decoder using only the remainder. This may be accomplished by transmitting
only a subset consisting of the largest likelihoods during each symbol duration—the likelihoods corre-
sponding to the slots with the largest number of observed photons. The received values in the remaining
slots are set to the mean of a noise slot. In small background, a small subset may be chosen with negligible
loss.
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V. Interleaver

Let f be the interleaver function, such that a bit at position 7 at the input to the interleaver is
mapped to position f(i) at the output. If f maps S = {0,1,---, N; — 1} one-to-one and onto S, f is
a valid interleaver. Good performance has been observed with iterative coding schemes using a pseudo-
random interleaving function f. However, pseudo-random functions may be complex to implement in
hardware, requiring a table look-up. The SCPPM code uses a permutation polynomial (PP), which has
low implementation complexity.

A second-degree polynomial f(x) = (az + bz?) mod N; with N; divisible by 4 or not divisible by 2 is
a PP (a valid interleaver) if and only if b is divisible by the prime factors of N; and « is not [20]. Let
R, = k,/n, be the rate of the outer code and R; = k;/n; the rate of the inner code. It is convenient
for N; to be divisible by n, and k;. For example, the value N; = 15120 = 2% x 33 x 5 x 7 was chosen
for the MLCD SCPPM code to allow flexibility in the choice of inner and outer code rates.? Candidate
quadratic interleavers for N; = 15120 are of the form f(z) = (ax + 210nz?), where n is a positive
integer and a doesn’t have 2,3,5, or 7 as a factor. Among this class, we have observed good performance
with the polynomial f(z) = 11z + 21022, We have observed no loss with this interleaver relative to
pseudo-randomly generated interleavers chosen with a large spread.

A. Implementation of the Mapping

Barron and Robinson® have demonstrated a recursive implementation of a permutation polynomial
interleaver mapping that requires only additions. Let [-] be the mod N; operator. Expand f(x + 1):

flz+1) = [a(z + 1) + b(z + 1)?]
= [[cw; +bz?] + a4+ b+ 2b$]]

= [f(2) + g(x)]
where g(z) = [a + b+ 2bz]. Expanding g(z) similarly yields
glz+1) = [g(x) + Qb]

Note that (f(z) + g(z)) < 2N; — 1. Hence the modulo operations for g or f may be implemented with a
comparison:

| f(@) + g(2), if f(z) +g(x) <N
flx+1) = {f(fc) + g(x) — Ny, otherwise '

B. Inverses of Permutation Polynomials

It would be convenient to be able to implement the inverse of a PP with low-degree PP. One can show
the PP interleaver f(z) = 11z + 21022 has a quadratic inverse.* Under what conditions does this hold
and how do we find the inverse?

2 Personal communication, D. Boroson, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Mas-
sachusetts, August 2004.

3 R. Barron and B. Robinson, “Recursive Polynomial Interleaver Algorithm,” Interoffice Memorandum (internal document),
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, September 2004.

4 This was brought to our attention by R. Barron and B. Robinson.
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The composition of two PPs is a permutation polynomial (let f,g be PPs; then f(g(S)) = S). Since
there are a finite number of permutations of S, each PP f has a PP inverse, obtained by composing f
with itself a sufficient number of times. Hence, the collection of PPs forms a group with binary operation
composition. This yields a straightforward algorithm to find the inverse of a PP f by self-composition:

This algorithm allows one to show that the degree of the inverse of a quadratic PP is no larger than
the largest power of a prime divisor of Ny:

Lemma 1. If f is a second degree PP, then the n-fold composition of f with itself, reduced modulo
Ni, has degree no larger than the largest power of a prime divisor of Ny.

Proof. Let f(z) = ax + bx? be a PP over N; and m the largest power of a prime divisor of N;. The

coefficient of the degree k terms in f are divisible by b*~1. If the coefficient of the degree k terms in f()
are divisible by b*~!, then the coefficients of the degree k terms in

FOED) g ) 4, (f<n>)2

are clearly divisible by b*~1: b is divisible by the factors of N, hence ™ = 0mod N7 and f(™) contains
no terms of degree larger than m. a

Applying the composition algorithm to f(x) = 11z + 21022 yields the inverse
[N (@) = 12371z + 777022 + 25202° + 7560z*
which may be reduced to the equivalent quadratic polynomials
f~Hx) = 73312 + 77702>

= 14891z + 21022

VI. Stopping Rule

Iterations between the inner and outer code are terminated based on a stopping rule. Let Corco denote
the collection of CRC codewords and C, the collection of outer (convolutional) codewords. Let @ and %
denote the binary vectors of bit estimates made on the corresponding a posteriori bit likelihoods. The
SCPPM decoder terminates iterations if 1 € Cocre and x € C,. If this does not occur, iterations are
ended after a maximum is reached.
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Checking whether &1 € Cope and x € C, are the well-known problems of computing the syndrome of
a cyclic and convolutional code, respectively. Both checks may be implemented with simple, well-known
circuits in hardware, e.g., [21,22].

We have observed no degradation in performance with this joint rule relative to a genie-aided stopping
rule which terminates iterations when decoding converges to the correct codeword. The genie-aided rule
terminates at the minimum number of iterations required for correct decoding. The joint rule may stop
sooner (yielding an undetected error) but no later, since it stops once a valid codeword is found. Hence,
the average number of iterations is no greater than that with the genie-aided rule.

A. Probability of Undetected Codeword Error

The SCPPM decoder terminates iterations if 1 € Core and x € C, and ends iterations after a
maximum is reached. A codeword error is declared if the maximum is reached without termination. An
error is undetected if the decoder terminates iterations and & # u. What is the probability of undetected
error for this decoder?

To simplify analysis, assume the decoder runs a fixed number of iterations after which it decides
whether a codeword error has occurred based on the described criteria. Then

P ZP(fl 75 u,xcC,, e chc)
=P(0 # u,0 € Core)P(% € Cola # v, € Core)

In order to evaluate P(1 # u,a € Cogre), we require a distribution on error patterns that result from
estimates on p(u; O) and a description of the CRC. Assume the error patterns may be modeled as the
output of a binary symmetric channel with appropriately chosen crossover probability and an [-bit CRC.
Under this assumption, P(1 # u,i € Ccpc) approaches 27! in the limit of large block lengths [23]
(a good approximation for block lengths larger than 500). We’ll use this approximation to obtain the
(approximate) bound

P ~27'P(x € C,lt # u, 1t € Core)

The second term corresponds to the event that the decoder chooses a valid codeword given it has chosen
a valid, but incorrect, input pattern. We conjecture the probability of this event for a large codeword is
very small at all operating points. We have yet to observe an undetected error at any operating point in
extensive simulations (>10% codeword errors) with an [ = 16-bit CRC.

VII. Bit-to-Symbol Mapping

On a memoryless channel, the mapping of user bits to PPM symbols has no effect on performance
(one could convert one bit-to-symbol mapping to another by re-ordering the sequence in which the slots
are transmitted). However, real-world effects such as timing errors and finite bandwidth responses to
photon arrivals introduce inter-slot interference (ISI) and memory to the channel. In the presence of ISI
a fraction of each pulse energy may appear in an adjacent slot. Noise due to ISI alters the symmetry of
the signal set. For example, PPM symbols with pulses in adjacent slots may be more likely to be confused
with one another in ISI. In this case, the performance will depend on the bit-to-symbol mapping.

Figure 6 illustrates the inner APPM code. The sequence a is passed through a 1/(1 + D) filter to

produce the sequence b. Each consecutive logy M bits of a map to a corresponding log, M-bit pattern
of b, which is mapped to an M-ary PPM symbol c.
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Fig. 6. The APPM inner code.

Consider three candidate bit-to-symbol mappings for the APPM code: natural, Gray, and anti-Gray,
illustrated in Table 1 for M = 8. In the table, a is the 3-bit input to an accumulator in the given state,
and b the corresponding output. Patterns are inserted to the accumulator from right least significant bit
(Isb) to left most significant bit (msb). In a natural mapping, b is mapped to a pulse in position b (the
decimal representation of b). In a Gray-mapping, pairs of inputs a;, as with minimal Hamming distance
(one) are mapped to pairs of PPM symbols c1, co with pulses in adjacent slots. In an anti-Gray mapping,
input pairs a;,as with maximal Hamming distance (logy(M) or logy(M) — 1) are mapped to pairs of
PPM symbols with pulses in adjacent slots.

Note that for Gray and anti-Gray mappings the properties are defined relative to a, the input to the
accumulator for each accumulator state. Following convention, the natural mapping is relative to b,
the output of the accumulator. For all mappings, the mapping of b, the output of the accumulator, to
PPM symbols is consistent for both accumulator states. Changing the accumulator state inverts the
first output bit of the accumulator for the same input. Hence, by defining mappings relative to inputs a
for state 0 and preserving the corresponding mapping of outputs b for state 1, we obtain a consistent
mapping property for both states. This allows one to construct a fixed mapping of the outputs of the
accumulator to PPM symbols.

Table 1. Bit-to-symbol APPM mappings, M = 8.

PPM pulse position

State a b
Natural Gray Anti-Gray
0 000 000 0 0 0
0 001 111 7 7 5
0 010 110 6 3 6
0 011 001 1 4 3
0 100 100 4 1 2
0 101 011 3 6 7
0 110 010 2 2 4
0 111 101 5 5 1
1 000 111 7 7 5
1 001 000 0 0 0
1 010 001 1 4 3
1 011 110 6 3 6
1 100 011 3 6 7
1 101 100 4 1 2
1 110 101 5 5 1
1 111 010 2 2 4
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There exist several standard constructions of Gray mappings. We construct a Gray code by label
reflection: (1) take a Gray code of length n and write it as a matrix with each codeword a row of the
matrix, (2) double the number of rows by adding the reflection of the code, and (3) append the sequence
0™1™ to the last column. In the resulting table, each row is distinct and is Hamming distance one from
its neighbor.

We construct an anti-Gray code as follows. Take the first half of the Gray code constructed by label
reflection. After each codeword, insert its inverse, i.e., bit-wise exclusive OR with the all-ones pattern.
Since the Gray codewords were distinct and all agreed in the last position, the anti-Gray codewords are
distinct. Each codeword has neighbors at distances n and n — 1, which yield the maximum achievable
average Hamming distance between adjacent codewords.

We have observed gains in using the anti-Gray mapping relative to the natural or Gray mappings on
channels with memory due to ISI. The relative gain depends on the magnitude and nature of the ISI.
For example, modeling the channel pulse shape as a truncated sinc pulse with a main lobe that is half
the slot width and assuming uniform pulse arrivals in a slot produces ISI. For this IST model, we observe
gains of 0.3 dB of the anti-Gray mapping relative to the Gray or natural mapping.’

VIIl. Performance

Due to changes in atmospheric conditions and the Sun—Earth—spacecraft geometry, the deep-space
optical channel sees wide variations in the signal and noise power. Figures 7 through 9 illustrate per-
formance of an SCPPM code relative to (n,k) = (4085,2047) RS-coded PPM (RSPPM) and capacity
at three different representative operating points for the MLCD mission. The SCPPM code uses PPM
order M = 64, the constraint length 3, rate 1/2, distance 5, (5,7) outer convolutional code, the permuta-
tion polynomial interleaver of length 15120 described in Section V, and the joint stopping rule described in

0
10 \
\
-1
Y
1072 (4085, 2047) “| -
w SCPPM RSPPM |n
b 1
o I
o
& oe \
E 10~ l| —
WER BER'llWER
|
[
Capacity ]
107 |- h .
h
| | L
—22 -20 -18 -16

ng/(MTy), dB photons/ns

Fig. 7. SCPPM and RSPPM performance, Poisson channel,
M= 64, n,=0.0025, T,;=1.6ns.

5 B. Moision, M. Srinivasan, and C. Lee, “Sequence Detection for the Optical Channel in the Presence of ISI,” JPL Interoffice
Memorandum (internal document), Jet Propulsion Laboratory, Pasadena, California, February 2004.
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Fig. 9. SCPPM and RSPPM performance, Poisson channel,

Section VI. An explicit summary of the decoding algorithm for this code is presented in the Appendix.
The RS block length was chosen to yield the best performance over all RS codes with the same rate
associating an integer number of PPM symbols with each code symbol [6]. Signal power is scaled by the
slot width, which is varied to support different throughputs. We see SCPPM performance 0.7, 0.9, and
1.2 dB from capacity for background noise n, = 0.0025,0.2, and 40.0, respectively. This represents gains

of 3.3,3.0, and 1.8 dB over RSPPM.

M =64, n,=40.0, To=350 ns.
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IX. Alternate Decoding Algorithms

The SCPPM code is composed of three constituent codes: a (5,7) convolutional code (CC), a 1/(1+ D)
accumulator (A), and a PPM mapping. In this section, we look at the trade-off of performance and
complexity by changing the way we decode these three building blocks of the SCPPM code.

In the implementation proposed in this article, the accumulator and PPM mapping are treated as a
single code, referred to as the APPM code. The APPM code may be decoded using the SISO algorithm
described earlier on a trellis with 2 states and 2M edges. This may be prohibitively complex for large M.
We may reduce the complexity by separately decoding the accumulate and PPM codes or by not including
certain modules in iterations. Each of the simplifications comes at a loss in performance.

Figures 10 and 11 illustrate performance of a number of ways of utilizing the same three building
blocks. The channel is the Poisson channel given by Eq. (13) with M = 64 and n; = 0.2. PPM, APPM,
A, and CC denote SISO modules for the associated code. An arrow denotes the direction that information
is passed. A bidirectional arrow denotes iteration between the SISO modules. When information is passed
iteratively, the bit likelihoods are interleaved (otherwise we see a sharp performance degradation). For

example, CC «— A «— PPM denotes soft decoding of PPM followed by iterations between the accumulate
and convolutional decoders.

With more than two SISO modules in iteration, the order of decoding becomes an issue. However, the

order of iterations affects only the decoding complexity and not the performance. With three modules,
we use the order PPM — A — CC — A — PPM.

Table 2 lists the relative performance and complexity of the various decoding algorithms. Each is
measured relative to (non-iterative) decoding of CC' «— A «— PPM. Complexity is measured as the
average number of trellis edges traversed by the decoding algorithm in decoding one codeword. For
iterative decoding, the average iterations required to achieve a bit-error rate of 10™° were used. This is
a first-order estimate of relative complexity, ignoring the cost of additional interleavers or, for example,
the ability to parallelize the PPM SISO in the absence of memory.
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Fig. 10. Bit-error rates, various ways of decoding SCPPM, Poisson
channel, M=64, n,=0.2, T;=32ns.
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Table 2. Decoding algorithm performance and complexity trade-off,
M = 64,np = 0.2.
Normalized ns/(MTs)
Decoding algorithm average edge gain at
operations/codeword BER = 105, dB
CC«— A~ PPM 1 0
CC — APPM 1.3 1
CC < A+ PPM 3.3 3.45
CC«— A~ PPM 5.7 3.88
CC «— APPM 11.6 4.88

We see the best performance with CC < APPM. We see approximately 1-dB loss when the accu-

mulate and PPM modules are not coupled, and an additional 0.4-dB loss when the PPM SISO is not
included in iterations.

X. Conclusions

Consider the design of coded modulation for an average power constrained optical channel. The
channel operates efficiently with a large peak-to-average power ratio, which we choose to implement with
PPM. The SCPPM code concatenates PPM with a recursive accumulator, a simple short constraint length
convolutional code and bit interleaver. This is essentially convolutionally coded PPM, which, in itself,
is not a new idea. The gains of SCPPM lie in incorporating the demodulation with iterative decoding

of the convolutional code. With this twist, convolutionally coded PPM outperforms all currently known
coded PPM architectures (for operating points considered).

Furthermore, the SCPPM encoder has a low-complexity implementation, and the decoder a moderate-
complexity implementation. The bottle neck in decoding with large PPM orders lies in the iterative
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demodulation of PPM. We have shown several methods to alleviate the hardware complexity of this step.
We have also laid out explicit low-complexity, robust choices for an interleaver and stopping rule, other
important components of the SCPPM code. This allows a high-speed implementation of the decoder in
hardware. A detailed description of a hardware implementation appears in a companion article [24].
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Appendix
Full Summary of SCPPM Decoding

Here we enumerate all the steps of the algorithm in the log domain for an example where the inner
code is accumulate-PPM with M = 64, the outer code is the rate-1/2, 4-state (5,7) convolutional code,
and the interleaver has length 15120 bits (these are the MLCD SCPPM code parameters). The outer
code is terminated in the all-zeros state. The inner code is not terminated.

(1)

(Inner SISO) Receive symbol log-likelihoods 7(cy; I) from the channel. On initialization,
set the bit LLRs p(aks;I) = 0. On successive iterations, receive the bit LLRs p(a ;1)
from the outer code. Compute edge input symbol log-likelihoods (LRs)

(=1)*p(ag,:; )

| =

7T<ak;f) :Z

i=1

for a € {0,1,---,63} (meaning the corresponding 6-bit vectors a) and k =1,-- -, 2520.
Compute

(€) = m(a(e); I) + m(c(e); 1)

for each of the 128 edges in an inner code trellis stage and each stage k =1, ---,2520.

Compute

=~/

’}/k(sa S,) :m*axe:i(e):s,t(e):s’ {:}/k(e)}
for each pair of initial and terminal states (s,s’) € {(0,0),(0,1),(1,0),(1,1)} and each
k =1,---,2520. These are 32-input max operations, and may be computed using the

pipelined algorithm.
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(4) Initialize

al(s):{o, s=0

—00, otherwise

Recursively compute

ar(s) = max (6—1(0) + F.41(0,5), ak-1(1) + Fhy1(1,5))

ﬁk(s) = m*ax (Bk+1(0) + ﬁ/l/c+1(87 0)7 Bk+l(1) + f?]/q+1(87 1))

for s € {0,1} and k =1,---,2520. These are 2-input max operations.
(5) Compute

foree & and k=1,---,2520.
(6) Compute

P(ak,i; O) —maXeEgA {)\k } maXPEgA {)\k } Plak,i; I)

for k =1,---,2520, 7 = 0,---,63. These are 64-input max operations and may be com-
puted using the pipelined algorithm.

(7) (De)-interleave the p(ag,;; O). The output of the interleaver is the p(xy ;; ).

(8) (Outer SISO) Receive bit LLRs p(zy,;I) from the inner code. Compute edge output
symbol log-likelihoods (LRs)

B
l\DI»—l

x i .
m(xp; 1) = Rip(rg,i )

~.
Il
—

for each x € {(00), (01), (10), (11)} and k =1, -+, 7560.
(9) Set

i(e) = Tr(as(e); I)

for each of the 8 edges e in the outer code trellisand k = 1, - - -, 7560. Note that W(u(e); I) =
0 for all iterations; hence it doesn’t appear in the addition.
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(10) Initialize

() ={ %

ails) = —o00, otherwise
_ 0, s=0
Brse1(s) = { —00, otherwise

Recursively compute

ar(s) = mBXe:t(e):s {dk_l(i(e)) + ’_yk(e)}

ﬁk(s) = m*a'Xe:i(e):s {BkJrl (t(e)) + %H(@)}

for s € {0,1,2,3} and k= 1,---,7560. These are 2-input max operations.
(11) Compute

Ae(e) = an—1(i(e)) + Fu(e) + Be(t(e))

for each of the eight edges and k=1, -+, 7560.
(12) Compute

P(uk,q; O) :maxeegé{i {j\k(e)}— maxeeglz{i {S\k(e)}

playj:0) =maxeeex { ()} - maxeeex {Aele)} = prj(X; 1)

fork=1,---,7560, ¢ =0, and j =0, 1.
(13) Check the stopping rule. If satisfied, terminate; otherwise continue.

(14) Interleave the p(z,;; O) and go to step (1). The output of the interleaver is the p(ag, ;; I).
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